
Canonical-Variables Multigrid Method for Steady-State Euler

Equations

Shlomo Ta'asan �

The Weizmann Institute of Science

and

Institute for Computer Applications in Science and Engineering

Abstract

In this paper we describe a novel approach for the solution of inviscid 
ow problems for subsonic

compressible 
ows. The approach is based on canonical forms of the equations, in which subsystems

governed by hyperbolic operators are separated from those governed by elliptic ones. The discretizations

used as well as the iterative techniques for the di�erent subsystems, are inherently di�erent. Hyperbolic

parts, which describe, in general, propagation phenomena, are discretized using upwind schemes and

are solved by marching techniques. Elliptic parts, which are directionally unbiased, are discretized

using h-elliptic central discretizations, and are solved by pointwise relaxations together with coarse grid

acceleration. The resulting discretization schemes introduce arti�cial viscosity only for the hyperbolic

parts of the system; thus a smaller total arti�cial viscosity is used, while the multigrid solvers used are

much more e�cient. Solutions of the subsonic compressible Euler equations are achieved at the same

e�ciency as the full potential equation.

�This research was supported in part under the Incumbent of the Lilian and George Lyttle Career Development Chair and

in part by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480 while the author was

in residence at ICASE, NASA Langley Research Center, Hampton, Va 23681.

i



1 Introduction

In the past decade a substantial e�ort has been invested in solving the Euler equations, with multigrid

methods playing a central role. The two major directions of research in multigrid solution of the Euler

equations are the use of coarse grids to accelerate the convergence of the �ne grid relaxations, and the use

of defect correction as an outer iteration, coupled with use of multigrid to solve for the low order operator

involved [3]. Extensive research has been conducted in both directions. Unfortunately, both approaches

can be shown to have limited potential. Methods based on defect correction have h-dependent convergence

rates for hyperbolic equations, where h is the mesh spacing; other multigrid methods have p-dependent

convergence rates, where p is the order of the scheme involved. This unacceptable situation motivated the

research outlined here.

The poor behavior of coarse grid acceleration for hyperbolic equations, which becomes even worse with

high order discretizations, leads us to conclude that coarse grids should not be used to accelerate convergence

for hyperbolic problems. Rather, the relaxation process alone should converge all components of such

problems. This is possible, since hyperbolic problems describe propagation phenomena for which marching

in the appropriate direction is a highly e�ective solver. For elliptic problems, on the other hand, local

relaxation with good smoothing properties can be greatly accelerated by coarse grid correction. Moreover,

elliptic problems cannot be solved e�ciently by local relaxation alone, so that coarse grid acceleration is

essential. In short, hyperbolic equations do not need coarse grid acceleration, while elliptic equations require

such acceleration.

These observations have motivated a study concerning the separation of the hyperbolic and elliptic parts

in steady state inviscid 
ow calculations. The result is a canonical form for the inviscid equations, where the

hyperbolic and elliptic parts reside in di�erent blocks of an upper triangular matrix for the system [5]. These

canonical forms are the analog of the decomposition of the time dependent one-dimensional Euler equations

into characteristic directions and Riemann invariants. The insight gained by the use of the canonical variables

enables one to construct genuinely multidimensional schemes for these equations. It uni�es the treatment of

the compressible subsonic case with the incompressible case, although these two cases have been studied by

di�erent methods until now. Canonical boundary conditions [5] which enable the proper numerical treatment

of general boundary conditions are also obtained. Moreover, these canonical forms enable the construction

of new solvers having much better e�ciency than existing solvers.

The new discretization schemes, which are based on these canonical forms, use upwind discretization

only for the hyperbolic variables, and use a central h-elliptic discretization for the elliptic variables. This

gives a better representation for the physical phenomena, since elliptic problems do not have a bias in

any spatial direction, a property that should hold true for the discretization as well, if possible. Upwind

discretization for hyperbolic problems, on the other hand, is compatible with the bias of information 
ow in

the physical problem. The canonical form, therefore, allows for a better treatment of the inviscid equations.

The resulting schemes are also compatible with the uniqueness properties of the inviscid equations under
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di�erent geometries and boundary conditions. In particular, the nonuniqueness of solutions for exterior 
ows

around smooth bodies is clearly evident with these schemes; only the addition of a global condition, such

as circulation at in�nity, insures uniqueness. In existing schemes this issue is much more obscure and there

seems to be no direct analog of the physical behavior.

We discretize the elliptic part of the system with staggered grid schemes, which are h-elliptic. The

importance of h-elliptic discretizations is that they yield solutions free of spurious or weakly spurious modes,

in the limit as the Mach number goes to zero. The construction of fast solvers for such discretizations is

well understood, even in the case of systems, and is quite straightforward. By contrast, the non-staggered

schemes commonly used would require special techniques for the construction of optimally e�cient multigrid

solvers (having e�ciency comparable to that of the full potential equation). Such solvers require multiple

coarse grids on each level, even for regular grids having cell aspect ratios near one [2].

The elliptic and hyperbolic parts of the equations are treated di�erently by the solver. Unlike existing

solvers, which use coarse grids to accelerate the hyperbolic part of the system as well, the new method

computes the hyperbolic part via relaxations based on the canonical forms. This involves marching in the

streamwise direction for the hyperbolic quantities, which are the entropy s and total enthalpy H. The rest

of the unknowns, e.g., the velocity components, are relaxed by a Kaczmarz relaxation using preconditioned

residuals, yielding a smoothing rate identical to that for the full potential equation.

Numerical results are given for a two dimensional 
ow around an ellipse and 
ow in nozzle. These

problems already include the major di�culties in real problems and serve as a good test for the method

proposed. Second order schemes are used for both cases and the solutions are obtained with convergence

rates similar to that of the full potential equation (although the work involved here is larger accounting for

the multiple equations).

2 Canonical Forms and Discretization Rules

The discretization and e�cient solution of elliptic systems of partial di�erential equations is quite well

understood. One of the important concepts here is h-ellipticity [1]. It guarantees that the stability of high

frequencies for the discrete problem is in correspondence to that of the di�erential system. For the latter,

ellipticity is de�ned in terms of the symbol P̂ (!) as

det P̂ (!) � Cj!j2m; (2.1)

while h-ellipticity is de�ned as

det P̂ h(�) � Cj�j2m; j�j � � (2.2)

Discretizations which are h-elliptic admit local relaxation methods with good smoothing properties. This,

together with e�cient coarse grid acceleration for smooth components, makes standard multigrid methods

very e�cient for such discretizations. Although other types of discretization also admit fast multigrid solvers,

we restrict our focus to h-elliptic discretization for elliptic problems.
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The discretization of hyperbolic equations, which usually describe propagation phenomena, can be done

naturally using upwind biased schemes. However the application of the above ideas to the steady state

inviscid incompressible and subsonic compressible equations is not straightforward, since these equations are

neither elliptic nor hyperbolic, but rather mixed hyperbolic-elliptic. The optimal treatment of the problem

should therefore include an identi�cation of these two parts, which have inherently di�erent behavior and

call for di�erent numerical treatment both on the level of the discretization and the solver. The device for

this is a canonical form of the equations, described in detail in [5].

For a two dimensional 
ow, the canonical form of the compressible Euler equations is
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where:

D1 = �=c2((c2 � u2)Dx � uvDy)
D2 = �=c2((c2 � v2)Dy � uvDx)
D0 = vDx � uDy

(2.4)

In view of these canonical forms we can use the following discretization rule for the invisicd equations:

1. Use central (unbiased) h-elliptic discretizations for elliptic subsystems

2. Use upwind biased schemes for hyperbolic subsystems

3 Discretization

Let a domain 
 2 IR2 be divided into arbitrary cells. Let the vertices, edges, and cells be V,E, and C

respectively. The well known Euler formula

#V +#C +#holes = #E + 1 (3.1)

suggests several possibilities for discretization of di�erent systems on structured and unstructured meshes.

Rewriting the Euler formula as

#V +#V +#C +#C +#holes = #C +#V +#E + 1 (3.2)

one obtains the following choice of discretization. Let H be associated with the cell centers, the normal

velocity components be at the edges, and the entropy be at the vertices. Quantities other than these

are calculated by well known algebraic relations for the thermodynamic quantities and by averaging for

the tangential velocity components. With each cell, we associate one continuity equation and one energy

equation, while the two momentum equations are associated with each vertex. The following diagram is then

obtained:
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Original grid

Dual  grid

Figure 1:

V � n () #E
s () #V
H () #C
div�V = 0 () #C
�V � curlV +rP = 0 () 2#V
div�VH = 0 () #CR
�hole

V � td� () #holes

(3.3)

The control volumes for an unstructured mesh, for the continuity, energy, and momentum equations are

shown in Figure 2.

The canonical form for the compressible equations suggests that only the entropy and the total enthalpy

will be discretized using upwind biased schemes, and only in the appropriate terms; that is, only those terms in

which a derivative in the streamwise direction occurs will be discretized with upwind bias. Other derivatives

of these quantities will be discretized using central di�erencing. Let e1 = (u=q; v=q), and e1 = (�v=q; u=q).

Decomposing the unit normal vectors to the edges as

n = (n � e1)e1 + (n � e2)e2 (3.4)

we obtain the following discretization of the pressure terms

dp =
X
l2�


[pupl (nl � e
l
1)e

l
1 + pcl (nl � e

l
2)e

l
2]dsl (3.5)

(3.6)
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where

pup = p(Sup;Hc; q2); (3.7)

pc = p(Sc;Hc; q2): (3.8)

and superscript "up" refers to an upwind biased approximations, while superscript "c" refers to a central

approximation. The full discretization is then

X
j2


��jVj �njdsj = 0; (3.9)

X
l2�


((��lVl � nl)Vldsl + dp = 0; (3.10)

X
j2


��jVj � njH
up
j dsj = 0; (3.11)

where �� is computed using a symmetric formula at subsonic points, and using an upwind biased one for

supersonic points. All other quantities involved use central approximations. Control volumes for the di�erent

equations are denoted by 
 and �
. Thus the only quantities that have been upwinded are the entropy and

total enthalpy. This results in a reduced arti�cial viscosity.

4 Multigrid Algorithm

The multigrid solver, like the discretization, is based on the canonical forms mentioned in section 2. The

main ingredient di�ering from other multigrid methods is the relaxation scheme. Other elements of the

multigrid method are standard and will be mentioned only brie
y.

As can be seen from the canonical form, the hyperbolic and elliptic parts for subsonic 
ows are separated.

Since these subsystems are of very di�erent nature, it is unlikely that the same numerical process will be

optimal for both. Indeed, it can be shown that coarse grids are ine�cient in accelerating certain smooth

components for hyperbolic problems. For these components convergence rate is roughly (2p � 1)=2p for a

p� order method. The better the scheme, the less coarse grids help!

This behavior suggests that coarse grids are not appropriate for accelerating convergence for hyperbolic

problems. The relaxation should therefore converge all hyperbolic quantities in the problem. While for

elliptic problems relaxation cannot be e�cient for smooth components, for hyperbolic problems the situation

is di�erent. Marching in the direction of the physical 
ow is very e�cient in converging all hyperbolic

components eliminating the need for coarse grid acceleration. For elliptic problems, on the other hand,

relaxation techniques with good smoothing properties, combined with coarse grid acceleration, yield optimal

solvers. The separation of the di�erent subsystems presented by the canonical form allows one to construct

an optimal solver for the full system. Marching techniques will be used for the hyperbolic quantities, while

local relaxation with good smoothing will be used for the elliptic parts.
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4.1 Relaxation

Let the residual of the compressible Euler equations be denoted by (R�; R�u; R�v; RH) and the ones for the

canonical form by (r1c ; r
2
c ; r

3
c ; r

4
c). Then the following relation prevails
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The relaxation for the Euler equations is employed as follows. The total enthalpy is relaxed �rst, using

the preconditioned residual r4c

H
  � H
 + (r4c)
 :=c
H

 (4.2)

Next the entropy is relaxed using

s�
  � s�
 + (r3c)
=c
s
�
 ; (4.3)

where cH
 and cs�
 are the diagonal coe�cient in the discrete version of uDx + vDy and ��T (uDx + vDy),

respectively. This is followed by relaxing the continuity and vorticity equations. The relaxation for the

continuity equation is done by keeping the values for the density frozen, i.e.,

Vj � nj  � Vj �nj + (r1c )
 ��jdsj=
X
k2


( ��kdsk)
2; j 2 
; (4.4)

and the vorticity equation is relaxed as:

Vl � tl  � Vl � tl + (r2c=(q�))�
dsl=
X
k2�


(dsk)
2 l 2 �
 (4.5)

Note that the preconditioning of the discrete system does not result in an exact upper triangular form.

Lower diagonal terms exist, but these are of order O(h2) and do not a�ect the design of the relaxation and

other numerical processes.

The coarsening part of the multigrid method used is standard, so its details are omitted. Coarse grids are

created by combining neighboring �ne grid cells into a coarse grid cell. Linear interpolation of corrections

and full weighting of residual and functions are used in an FMG-FAS formulation [1].

5 Numerical Results

We present here numerical results for subsonic cases of 
ow in a nozzle and around an ellipse. These cases

already present most of the di�culties encountered in subsonic compressible 
ows. For both cases body

�tted grid were used. In the case of the ellipse the grid extended to to a distance of 7 chords.

Figure 3 and 4 show results for 
ow in a nozzle. Mach lines as well as relative errors in entropy are shown.

Cases of in
ow Mach number of .2 and .02 are shown. Observe the small size of the errors in entropy, as
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well as the symmetry of the solution. The convergence rate of the multigrid method used is shown in Figure

5, in the top two pictures. A reduction of eight orders of magnitude in 10 cycles is obtained. Note that the

rate of convergence is independent of the Mach number.

Figure 5 shows results for a 
ow around an ellipse at a 10 degrees angle of attack, with free stream

Mach number of 0.1, with zero circulation at in�nity. This is a case of special di�culty. The exact values

for the lift and drag coe�cient are zero. The calculated values are CL = 2:3 � 10�3; CD = �7:7 � 10�3.

A grid re�nement study shows that the lift and drag coe�cient approach zero with mesh re�nement. The

convergence history for this problem is shown in the bottom picture of �gure 6. The full FMG history

(including coarse levels) is shown. The convergence rate in this case is slower than for the nozzle 
ow cases

but still very fast compared with existing methods.

6 Conclusion

A new approach for the discretization and the solution of the Euler equations have been presented. It is

based on a canonical form of the equations which allows for discretization which involve upwind biased

discretization only for the physically biased quantities, that is, entropy and total enthalpy. The multigrid

method used for that disctetization shows essentially optimal convergence rates for the second order schemes

used. Moreover, nonlifting solutions around smooth bodies at angle of attack are obtained. Unlike most

other methods, the performance of the method does not degrade as the Mach number approaches zero.
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